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Abstract. We take a new approach to harmonic polynomials via differ-
entiation.

Surprisingly powerful results about harmonic functions can be obtained simply
by differentiating the function |x|2−n and observing the patterns that emerge. This
is one of our main themes and is the route we take to Theorem 1.7, which leads
to a new proof of a harmonic decomposition theorem for homogeneous polynomials
(Corollary 1.8) and a new proof of the identity in Corollary 1.10. We then discuss
a fast algorithm for computing the Poisson integral of any polynomial. (Note: The
algorithm involves differentiation, but no integration.) We show how this algorithm
can be used for many other Dirichlet-type problems with polynomial data. Finally,
we show how Lemma 1.4 leads to the identity in (3.2), yielding a new and simple
proof that the Kelvin transform preserves harmonic functions.

1. Derivatives of |x|2−n

Unless otherwise stated, we work in Rn, n > 2; the function |x|2−n is then har-
monic and nonconstant on Rn \ {0}. (When n = 2 we need to replace |x|2−n with
log |x|; the minor modifications needed in this case are discussed in Section 4.)

Letting Dj denote the partial derivative with respect to the jth coordinate vari-
able, we list here some standard differentiation formulas that will be useful later:

Dj|x|t = txj|x|t−2

∆|x|t = t(t + n − 2)|x|t−2

∆(uv) = u∆v + 2∇u · ∇v + v∆u.

The first two formulas are valid on Rn \ {0} for every real t, while the last formula
holds on any open set where u and v are twice continuously differentiable (and real
valued); as usual, ∆ denotes the Laplacian and ∇ denotes the gradient.
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For higher-order derivatives we will use multi-index notation. Thus for α an
n-tuple (α1, . . . , αn) of nonnegative integers, Dα denotes the differential operator
Dα1

1 . . . Dαn
n . For x = (x1, . . . , xn) ∈ Rn, xα is the monomial xα1

1 . . . xαn
n ; the degree

of xα is |α| = α1 + · · · + αn. A polynomial is said to be homogeneous of degree m
if it is a finite linear combination of monomials xα of degree m; here m = 0, 1, . . . .
(By “polynomial” we will always mean a polynomial on Rn.)

The collection of all polynomials homogeneous of degree m will be denoted by Pm.
The subset of Pm consisting of harmonic homogeneous polynomials of degree m will
be denoted by Hm.

Set c0 = 1 and for m > 0 define

cm =
m−1∏
j=0

(2 − n − 2j). (1.1)

Also set P−1 = P−2 = {0}. Our first observation on differentiating |x|2−n is the
following lemma.

Lemma 1.2 If |α| = m, then

Dα|x|2−n = |x|2−n−2m(cmxα + |x|2qα) (1.3)

for some qα ∈ Pm−2.

Proof. The proof will be by induction on m; the lemma obviously holds if m = 0.
Suppose that

Dα|x|2−n = |x|kp,

where |α| = m, k = 2 − n − 2m, and p = cmxα + |x|2qα for some qα ∈ Pm−2. Then

Dj(Dα|x|2−n) = kxj|x|k−2p + |x|kDjp

= |x|k−2(kxjp + |x|2Djp)

= |x|k−2(kcmxjx
α + |x|2(kxjqα + Djp)

)
= |x|2−n−2(m+1)(cm+1xjx

α + |x|2r),

where r = kxjqα + Djp. Because r ∈ Pm−1, the last line has the form specified on
the right of (1.3), with m+ 1 in place of m. This completes the induction argument
and hence the proof of the lemma.

Note that the polynomial cmxα + |x|2qα in (1.3) belongs to Pm. Actually, this
polynomial belongs to Hm, as the next lemma will show.

Lemma 1.4 If p ∈ Pm, then

∆(|x|2−n−2mp) = |x|2−n−2m∆p.
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Proof. Let t ∈ R and let p ∈ Pm. Using the differentiation formulas above, we
compute the Laplacian of |x|tp:

∆(|x|tp) = |x|t∆p + 2t|x|t−2x · ∇p + t(t + n − 2)|x|t−2p.

Because p ∈ Pm, we have x · ∇p = mp. Thus the equation above reduces to

∆(|x|tp) = |x|t∆p + t(2m + t + n − 2)|x|t−2p. (1.5)

Taking t = 2 − n − 2m now gives the conclusion of the lemma.

Referring again to (1.3), set pα = cmxα + |x|2qα for α a multi-index with |α| = m.
Because Dα|x|2−n is harmonic (being a partial derivative of a harmonic function),
and because pα ∈ Pm, the last two lemmas imply

0 = ∆(Dα|x|2−n) = ∆(|x|2−n−2mpα) = |x|2−n−2m∆pα,

so that pα ∈ Hm as claimed above.
Observe that we now have a method for producing elements of Hm: We simply

apply Dα to |x|2−n to arrive at pα ∈ Hm. How much of Hm is obtained in this
manner? A consequence of Corollary 1.10 below is that the polynomials pα span all
of Hm.

We can now easily handle p(D)|x|2−n for any p ∈ Pm. Fixing such a p, and
writing p(x) =

∑
aαxα (so that p(D) =

∑
aαDα), we use (1.3) and linearity to

obtain

p(D)|x|2−n = |x|2−n−2m[cmp + |x|2
∑

aαqα].

Note that the expression in brackets belongs to Hm. Thus, setting

Λm(p) =
1
cm

|x|n−2+2m
(
p(D)|x|2−n

)
, (1.6)

we have proved the following theorem.

Theorem 1.7 If p ∈ Pm, then

(a) Λm(p) ∈ Hm;
(b) p = Λm(p) + |x|2q for some q ∈ Pm−2.

Theorem 1.7 leads to the following corollary, which gives the well-known decom-
position (1.9) and an explicit formula for pm.

Corollary 1.8 Every p ∈ Pm can be uniquely written in the form

p = pm + |x|2pm−2 + · · · + |x|2kpm−2k, (1.9)

where k = [m
2 ] and pj ∈ Hj for each j. Furthermore, pm = Λm(p).
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Proof. Theorem 1.7 implies that Pm = Hm + |x|2Pm−2 (as vector spaces). By
induction we thus obtain

Pm = Hm + |x|2Hm−2 + · · · + |x|2kHm−2k,

where k = [m
2 ] (note that Pm = Hm when m = 0 or 1). This establishes the

existence of the representation (1.9).
To prove uniqueness, suppose we have two representations of p as in (1.9). Setting

|x| = 1, we obtain two harmonic polynomials that agree on the unit sphere of Rn,
and hence agree on all of Rn. Equating homogeneous terms of like degree then
shows that the two representations are identical.

That pm = Λm(p) now follows from Theorem 1.7(b).

The following result is an immediate consequence of Corollary 1.8.

Corollary 1.10 If p ∈ Hm, then p = Λm(p).

The last corollary implies that the linear operator Λm is a projection of Pm

onto Hm.
We do not claim to have the shortest proof of the direct sum decomposition

Pm = Hm + |x|2Hm−2 + · · · given by (1.9); that distinction probably goes to the
proof of Theorem 2.1 in Chapter IV of [6]. The more constructive approach taken
here, however, gives Theorem 1.7, Corollary 1.8, and Corollary 1.10 in one stroke.
Corollary 1.10 has been proved by various methods; see [3] (sections 79–80), [1]
(Theorem 5.32), and [5].

2. Fast Algorithms

We now show how results in the last section lead to fast algorithms for computing
exact solutions to the Dirichlet and certain related problems with polynomial data.
All of these problems are linear, so it suffices to treat the case where the data
function is a homogeneous polynomial. Our setting is the open unit ball in Rn,
which we denote by B. Given f ∈ C(∂B), the Dirichlet problem with boundary
data f asks for a continuous function on B̄ that is harmonic on B and agrees with f
on ∂B. The solution, as is well known, is the function whose value at points x ∈ B
is given by the Poisson integral

∫
∂B

1 − |x|2
|x − ζ|n f(ζ) dσ(ζ), (2.1)

where dσ denotes normalized surface area measure on ∂B.
Even if f is the restriction to ∂B of a polynomial, the integral in (2.1) is difficult to

compute directly; here we are referring to exact computations, not numeric approx-
imations. The algorithm we describe below avoids integration over ∂B altogether.
Our starting point is the following well-known consequence of the decomposition
given by Corollary 1.8.
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Corollary 2.2 If p ∈ Pm, then the solution to the Dirichlet problem with boundary
data p|∂B is

pm + pm−2 + · · · + pm−2k, (2.3)

where k = [m
2 ] and pm, pm−2, . . . , pm−2k are the harmonic polynomials given by (1.9).

Proof. Suppose p ∈ Pm. Take |x| = 1 in (1.9) to show that (2.3) equals p on ∂B.
Obviously (2.3) is harmonic on Rn, and hence its restriction to B̄ is the solution to
the Dirichlet problem with boundary data p|∂B.

So given p ∈ Pm, we need an algorithm for computing the polynomials pm,
pm−2, . . . of Corollary 2.2. The main idea for the algorithm we are about to describe
comes from [2] (see page 43). We start with an observation based on repeated
application of (1.5): If i, j are nonnegative integers, then the operator |x|2i∆i

equals a constant times the identity operator on the space |x|2jHm−2j. Denoting
this constant by cij, note that cij = 0 if and only if i > j. (We can easily compute
cij exactly using (1.5), but we will only need the diagonal terms cjj.) Applying the
above operators to both sides of (1.9), we obtain the upper-triangular system of
equations

|x|2i∆ip =
k∑

j=i

cij|x|2jpm−2j,

i = 0, . . . , k. Letting (dij) denote the matrix inverse of (cij), observe that (dij) is
also upper triangular. Apply this inverse matrix to the system above to solve for
|x|2ipm−2i. After dividing by |x|2i, we obtain

pm−2i =
k∑

j=i

dij|x|2(j−i)∆jp (2.4)

for i = 0, . . . , k.
To find (dij) we start with the diagonal terms:

djj =
1
cjj

=
1

2jj!
∏j

l=1(2m + n − 2j − 2l)
. (2.5)

Similarly, the other dij could be computed from the cij. However, an iterative
formula for the dij gives faster computations. We obtain this formula by taking the
Laplacian of both sides of (2.4) (use (1.5)) and recalling that pm−2i is harmonic.
This leads to (we spare the reader the computational details)

dij =
−di,j−1

2(j − i)(2m + n − 2 − 2i − 2j)

for j = i + 1, . . . , k. The last equation, together with (2.4) and (2.5), gives us an
algorithm for computing the polynomials pm−2i, as desired.
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The Mathematica∗ software package∗∗ that accompanies [1] now uses the algo-
rithm described above. To illustrate the output of the package, here is what it gives
for the solution to the Dirichlet problem in R5 with boundary data x1

5x2:

65x1x2 − 110|x|2x1x2 + 45|x|4x1x2 + 330x1
3x2 − 330|x|2x1

3x2 + 429x1
5x2

429
.

This algorithm is considerably faster than the best method we previously knew for
computing solutions to Dirichlet problems with polynomial boundary data. The
old algorithm, based on Theorems 5.19 and 5.24 of [1], required explicit formu-
las for zonal harmonics and for integrating polynomials over the unit sphere. To
compare the two methods, consider the following case: A computer using the old
algorithm spent more than a day on the Dirichlet problem in R6 with boundary
data x1

20 without finishing. Using the new algorithm, the same machine calculated
the solution in about 10 seconds.

The new algorithm gives rise to fast algorithms for solving many Dirichlet-type
problems with polynomial data. We outline some of these techniques below; all
of them have been implemented in the software described above. We fix a ho-
mogeneous polynomial p ∈ Pm for the rest of this section, and assume that the
harmonic polynomials pm, pm−2, . . . of Corollary 2.2 have been computed as above.
For convenience (so we don’t have to worry about whether m is even or odd), we
set pm−1, pm−3, . . . all equal to 0. Thus we can write

p =
m∑

j=0

pj

on ∂B.

Neumann Problem Find the harmonic function on B̄ whose outward normal
derivative on ∂B equals p and whose value at the origin equals 0.

The solution to the Neumann problem is the function

m∑
j=1

pj

j
,

provided that
∫

∂B p dσ = 0 (otherwise no solution exists, by Green’s identity). This
function is obviously harmonic. To verify that it solves the Neumann problem, note
that the outward normal derivative on ∂B of a function pj ∈ Pj equals jpj.

∗Mathematica is a registered trademark of Wolfram Research.
∗∗This Mathematica package and its documentation are electronically available free of

charge. To obtain them, send an e-mail request to axler@math.msu.edu, or retrieve them
using a www browser from http://math.msu.edu/˜axler. This software, written by the
authors and Paul Bourdon, will work on any computer that runs Mathematica.
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Exterior Dirichlet Problem Find the harmonic function on {|x| ≥ 1} that equals
p on ∂B and is harmonic at ∞.

The solution to the exterior Dirichlet problem is the function
m∑

j=0

|x|2−n−2jpj.

This function is harmonic by Lemma 1.4. It obviously equals p on ∂B. Its har-
monicity at ∞, which is needed to insure uniqueness, follows from the definition in
[1], Chapter 4.

Bergman Projection Problem Find the harmonic function closest to p in the
L2(B)-norm.

Here we use Lebesgue volume measure on B. The solution to the Bergman projec-
tion problem is the function

m∑
j=0

2j + n

j + m + n
pj.

This function is obviously harmonic. That it is the orthogonal projection of p into
the harmonic functions in L2(B) follows from Theorem 8.14 of [1].

The boundary data for the next two problems consists of two polynomials. Thus
in addition to p ∈ Pm, we fix q ∈ PM ; here M ≥ 0. As with p, the algorithm for
solving the Dirichlet problem gives harmonic polynomials qj ∈ Hj such that

q =
M∑

j=0

qj

on ∂B.

Annular Dirichlet Problem Let 0 < r < s < ∞. Find the harmonic function
on the annular region {r ≤ |x| ≤ s} that equals p on {|x| = r} and equals q on
{|x| = s}.

The solution to the annular Dirichlet problem is the function

m∑
j=0

|x|2−n−2j − s2−n−2j

r2−n−2j − s2−n−2j
rm−jpj +

M∑
j=0

|x|2−n−2j − r2−n−2j

s2−n−2j − r2−n−2j
sM−jqj.

This function is harmonic by Lemma 1.4. At a point x with |x| = r, it equals
m∑

j=0

rm−jpj(x) = rm
m∑

j=0

pj(x/r) = rmp(x/r) = p(x).

A similar calculation shows that it equals q on the outer boundary. The idea for
this solution comes from Chapter 10 of [1].
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BiDirichlet Problem Find the biharmonic function on B̄ that equals p on ∂B and
whose outward normal derivative on ∂B equals q.

A function u is called biharmonic if ∆(∆u) = 0. The solution to the biDirichlet
problem is the function

(|x|2 − 1)
2

( M∑
j=0

qj −
m∑

j=1

jpj

)
+

m∑
j=0

pj. (2.6)

A straightforward calculation shows that the Laplacian of this function equals

M∑
j=0

(n + 2j)qj −
m∑

j=1

j(n + 2j)pj,

which is harmonic, and hence (2.6) is biharmonic. The function (2.6) obviously
equals p on ∂B. An easy calculation shows that the outward normal derivative on
∂B of (2.6) equals q.

3. The Kelvin Transform

If u is a function on a subset of Rn \ {0}, then the Kelvin transform of u is the
function K[u] defined by

K[u](x) = |x|2−nu
( x

|x|2
)
.

(For more information on the Kelvin transform, see [1], Chapter 4.) Corollary 1.10
can be reformulated in terms of the Kelvin transform to state that

p =
1
cm

K[p(D)|x|2−n]

whenever p ∈ Hm (to see this, multiply both sides of the equation p = Λm(p) by
|x|2−n−2m, then take Kelvin transforms of both sides). The equation above is the
form in which Corollary 1.10 appears as Theorem 5.32 in [1].

The Kelvin transform is important because it comes close enough to commuting
with the Laplacian to preserve harmonic functions. The next proposition gives
the precise result. Closely related formulas can be found in [4], page 221, and [7],
Theorem 13.1, where the Laplacian of K[u] is computed by a straightforward but
long calculation. We take advantage of Lemma 1.4 to give a short and simple proof.

Proposition 3.1 If u is a C2 function on an open subset of Rn \ {0}, then

∆(K[u]) = K[|x|4∆u]. (3.2)
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Proof. Suppose p ∈ Pm. Then

∆(K[p]) = ∆(|x|2−n−2mp)

= |x|2−n−2m∆p (3.3)

= |x|2−n|x|−4 ∆p

|x|2(m−2)

= K[|x|4∆p], (3.4)

where (3.3) follows from Lemma 1.4 and (3.4) holds because ∆p is homogeneous of
degree m − 2.

The paragraph above shows that (3.2) holds whenever u ∈ Pm, and hence when-
ever u is a polynomial (by linearity). Because polynomials are locally dense in the
C2-norm, (3.2) holds for arbitrary C2 functions u, as desired.

The last proposition is the simplest way we know to see that a function is har-
monic if and only if its Kelvin transform is harmonic. Another proof of this can be
found in [1], Theorem 4.4.

4. n = 2

So far we have been assuming that n > 2. In this section we assume n = 2 and
discuss the modifications needed to make our results carry over to two dimensions.

Of course, the first order of business is to replace |x|2−n with log |x|. We also
need to redefine cm; thus for m > 0 we set

cm = (−2)m−1(m − 1)!.

We then have the following analogue of Lemma 1.2.

Lemma 4.1 Suppose n = 2 and m > 0. If |α| = m, then

Dα log |x| = |x|−2m(cmxα + |x|2q)

for some q ∈ Pm−2.

The proof follows the same pattern as that of Lemma 1.2, except that the in-
duction now begins with m = 1 instead of m = 0. We leave the details to the
reader.

The only other change we need to make is in the definition of the projection
operator Λm. Here we set Λ0(p) = p and for m > 0 define

Λm(p) =
1
cm

|x|2m
(
p(D) log |x|).
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With these modifications, all the other results in the paper carry over to the two-
dimensional setting without change, with one exception: The solution to the two-
dimensional annular Dirichlet problem is

log |x| − log s

log r − log s
rmp0 +

m∑
j=1

|x|−2j − s−2j

r−2j − s−2j
rm−jpj

+
log |x| − log r

log s − log r
sMq0 +

M∑
j=1

|x|−2j − r−2j

s−2j − r−2j
sM−jqj.
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